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Abstract. It is shown that unless excluded volume effects are included in the comparison
between solution and pure liquid radial distribution functions, the conclusion that a particular
solute either enhances, decreases or has no effect on solvent structure may be erroneous. The
effect is most pronounced when the ratio between the volume occupied by the solute molecules
or ions and that occupied by the solvent molecules approaches unity. The case of acetylcholine
in aqueous solution is analysed as an example.

1. Introduction

The advent of the ISIS high-flux pulsed neutron source means that it is becoming
increasingly feasible to explore, by neutron diffraction and isotope substitution, the structure
of relatively complex liquid mixtures and solutions. In many cases, by a suitable
combination of diffraction data from different isotopic compositions, specific atom–atom
radial distribution functions,g(r), can be extracted. Perhaps the most common distributions
are those of the solvent hydrogen to solvent hydrogen (HH) and solvent hydrogen to other
atom (XH) radial distribution functions in confined fluids and liquid solutions (Soper and
Turner 1993). At the same time numerous computer simulations of solutions and fluid
mixtures are available, and these too produce radial distribution functions as one of their
primary results.

Often one of the tasks is to establish the extent to which the solvent structure in
these cases has changed in the presence of dissolved molecules and ions compared to
the pure liquid. Since the radial distribution functions are the primary result of a diffraction
experiment and are also widely reported in computer simulations, it is natural to compare
the radial distribution functions of the solvent in the solution with the radial distribution
functions of the solvent on its own. In the neutron experiment this is especially true of the
solvent HH distribution which can often be obtained free from solute–solute and solute–
solvent contributions, but for the computer simulation all solvent–solvent site–site radial
distribution functions are available, both in the pure solvent and in the solution.

The question that arises however is the following: how do you make that comparison?
Do you simply compare the ‘raw’ as-measured radial distribution functions? This is in fact
what has traditionally been done, and as a consequence statements have been made that the
solvent is more or less structured in the presence of a particular solvent. To understand
what might happen in this case, however, consider a simple thought experiment. Figure 1(a)
shows a single sphere of radiusR containing an ideal gas and sitting in an otherwise empty
space. The atoms of this gas are distributed randomly and uniformly within the sphere, but
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Figure 1. (a) The case of a single finite-sized molecule in space containing an ideal gas. Starting
from the point A, the local density near this point, when averaged over all directions, is equal
to the density of the gas. Far away however the density is zero, due to the confinement of the
gas. (b) An ensemble of particles of the kind shown in (a). Again starting from point A the
local average density is equal to the density of the gas. Far away from A the average density
is lower due to the volume of gas excluded from the space between particles, but it is not zero.
(c) This is the inverse of (b): now the fluid is only allowed in the spacebetweenthe particles.
This is the case encountered when attempting to compare the structure of water in a solution
with that in the pure liquid. The local density of water near point B is higher than the average
water density in the system.

do not exist outside it. Starting from any particular atom (e.g. point A in figure 1(a)) the
radial distribution function will be unity in the immediate vicinity of the atom, but must
decay to zero forr > 2R, since that is the maximum distance that any two atoms can occur
at. The radial distribution function is straightforward to calculate in this case, and can be
shown to be (Glatter and Kratky 1992)

gp(r) =
{

1− 3
4(r/R)+ 1

16(r/R)
3 for r 6 2R

0 for r > 2R.
(1)

The suffix p here is to indicate that this is the radial distribution function for a single
particle. We note at this stage that although the gas contained in the sphere is ideal, for
which normallygp(r) = 1 for all r, the fact that it is confined perturbs the expected radial
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Figure 2. Comparison of the centre radial distribution function for a fluid of hard-sphere solute
molecules of diameter 8.28̊A in a solvent made up of spheres of diameter 2.7Å, in the ratio
of one solute molecule to 50 solvent molecules (line), with the convoluted radial distribution
function (equation (14), circles) corresponding to the confined uniform fluid.

behaviour. However this effect has nothing to do with any altered interaction between the
gas atoms themselves, which are still ideal gas atoms. It has only to do with the enforced
confinement.

Now consider what happens when there is an assembly of such particles (figure 1(b)).
For convenience the particles are assumed to be spherical, identical and non-overlapping, but
this does not affect the underlying argument. Clearly the particles will have a distribution
of centres,gc(r), which is distinct from the internal radial distribution,gp(r). Figure 2
(thin line) shows a typical hard-sphere centre radial distribution function, obtained from
the Percus–Yevick equation. The total radial distribution function of this system will
therefore be a convolution of this centre distribution with the individual particlegp(r)

radial distribution function (see the next section), and this is shown as the thick line in
figure 2. Note that in performing this convolution a new term, namely theδ(r) function
corresponding to the particle correlating with itself, which is not normally plotted in graphs
of g(r), has now appeared, because the finite extent of each particle means that thisself-
radial distribution is now visible. We note that as a result of this extra termg(r) now
goes to unity at larger as expected but is significantlyaboveunity in the low-r region.
Physically this has a simple explanation in that with the coordinate origin on one atom
inside a particle that atom will ‘see’ a local number density which is significantly higher
than the average atomic number density of the system, which is diluted by the fact that
atoms areexcludedfrom regions between the spherical particles. Hence the termexcluded
volume effectis used to describe this result.

Finally, the case of most relevance to the present context, of solvent correlations in
the presence of a solute, is that when the atoms are allowed everywhereexcept inside
the particles (figure 1(c)) with the ideal gas atoms being regarded as the solvent, and the
spherical particles as the solute. In fact this case is the exact inverse of case (b), and
apart from a constant has the same form for the solvent radial distribution function, as will
be seen below. Inspection of figure 2 therefore already shows that the excluded volume
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effect on the solvent radial distribution functions will be most significant in cases where the
near-neighbour separation of the solvent atoms is less than a typical diameter of the solute
particles.

In the rest of this paper, the underlying formalism that accompanies this verbal summary
for case (b) is described in section 2, while the extension of this to the excluded volume
correction for the HH, XH and XX radial distribution functions in aqueous solutions
(case (c)) is described in section 3. Finally there is a brief discussion and conclusion
in section 4.

2. Theory of the excluded volume effect

The quantity obtained in a diffraction experiment is the static structure factor,S(Q), which
is related by Fourier transform to the static (t = 0) van Hove autocorrelation function,G(r)
(Hansen and Macdonald 1986)

G(r) = 1

N

∫
〈n(r′)n(r′ + r)〉 dr′ (2)

whereN is the number of point particles in the system of volumeV , and the instantaneous
local particle number density at positionr is defined as

n(r) =
N∑
j

δ(r −Rj ) (3)

withRj the position of thej th particle. The angle brackets in (2) denote a statistical average
of this correlation function over the accessible energy states of the system. Substituting (3)
into (2) we find

G(r) = δ(r)+ 1

N

〈∑
j 6=i

δ(r −Ri +Rj )
〉
= δ(r)+ n̄g(r) (4)

wheren̄ = N/V is the average number density of particles andg(r) is the radial distribution
function of particles. It is this latter function (‘distinct’ term) that is normally reported in
diffraction experiments and computer simulations of fluids, even though the precedingδ(r)
function (‘self’-term), which corresponds to the particle correlating with itself (and which
spreads out in space fort > 0), is also measured.

If the particles have a finite size and shape they will be here called molecules, and it
is necessary to distinguish between the distribution of molecularcentres(denoted by the
subscriptc) and the internal distribution of atomic density within the molecules and relative
to the centre (denoted here by the subscriptp). Writing Nc for the number of molecular
centres in a system of volumeV , and n̄c for the number density of centres, the centres
autocorrelation functionGc(r) can be written immediately from (2) and (4) as

Gc(r) = 1

N

∫
〈nc(r′)nc(r′ + r)〉 dr′ = δ(r)+ n̄cgc(r) (5)

wheregc(r) is the radial distribution function for molecular centres.
For the case where the molecules are extended and consist ofM component atoms

located in a molecule fixed frame at positionsdµ, µ = 1, . . . ,M, with respect to the centre
of mass, the local atomic number density in an isotropic phase is then given by a sum over
the positions of all atoms, as well as an average over the orientations�j of the molecules:

n(r) = 1

(8π2)Nc

∑
j

∑
µ

∫
{ d�j }δ(r − rjµ(�j )) (6)
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where the positionrjµ(�j ) of theµth atom on moleculej is given by

rjµ(�j ) = Rj +R(�j )dµ
with R(�j ) a Cartesian rotation that transforms the molecular vectors into laboratory-frame
vectors. A dummy integration is now introduced to separate the centre of mass from the
internal coordinates:

n(r) = 1

(8π2)Nc

∑
j

∑
µ

∫
{ d�j }δ(r −Rj −R(�j )dµ)

=
∫

dr′
∑
j

δ(r′ −Rj ) 1

(8π2)Nc

∫
{ d�j }

∑
µ

δ(r − r′ −R(�j )dµ)

=
∫

dr′ nc(r′)np(r − r′) (7)

which serves to define the internal atomic density distributionnp(r) of a molecule: this
function goes to zero outside the molecule. For example in an x-ray experimentnp(r) might
be the electron density distribution of a molecule, while for neutron scattering it would be
the neutron scattering length density distribution.

This atomic density distribution (7) is now substituted into the autocorrelation
function (4) as before. However if the particles are not spherically isotropic, there is a
complication in doing this in that the internal density distributionnp(r) is dependent on
the orientation of each molecule. This means that different results will be obtained for the
self- and distinct terms. However for the present purposes, and in line with the discussion
given in the introduction, it is sufficient to assume that orientational correlations between
distinct molecules are weak so that for the distinct term the orientational averages can be
performed as if the molecules were uncorrelated. For the practical cases in which excluded
volume effects are significant, this is a satisfactory approximation.

With this approximation the result is

G(r) = 1

N

〈 ∫
dr′ n(r′)n(r′ + r)

〉
= 1

N

∫
dr′

∫
dr′′

∫
dr′′′ 〈nc(r′′)nc(r′′′)〉〈np(r′ − r′′)np(r′ + r − r′′′)〉�

(8)

whereN = MNc. With the substitutionu = r′′ + r − r′′′, andu′ = r′ − r′′, equation (8)
can be rewritten

G(r) = 1

N

∫
du
∫

dr′′〈nc(r′′)nc(r′′ + r − u)〉
∫

du′〈np(u′)np(u′ + u)〉�. (9)

If the single-molecule internal autocorrelation function is written asG(s)
p (u) =

(1/M)
∫

du′〈np(u′)np(u′+u)〉� and the distinct molecule internal autocorrelation function
asG(d)

p (u) = (1/M) ∫ du′ 〈np(u′)〉�〈np(u′ + u)〉�, then with (5) we obtain finally

G(r) =
∫

du δ(r − u)G(s)
p (u)+

1

Nc

∑
j 6=i

∫
du δ(r − u−Ri +Rj )G(d)

p (u)

= n̄pg(s)p (r)+ n̄pn̄c
∫

du gc(r − u)g(d)p (u) (10)

where n̄p = M/vp represents the average scattering densityinside the molecules,vp
represents the nominal volume occupied by an individual molecule, and we have defined
the internal radial distribution functions of the molecule asg(s)p (r) = (1/n̄p)G(s)

p (r), etc.
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Note that if the molecules are spherically isotropic then the self- and distinct terms of these
internal radial distribution functions become identical, so the superscripts, (s) and (d), can
be dropped in that case.

The autocorrelation function for the system therefore consists of two contributions,
namely a single-molecule internal radial distribution term and a second term which is a
convolution of the distinct-molecule internal radial distribution function with the molecular
centre radial distribution function.

Although this result is straightforward, and probably for the most part obvious, it has
an important consequence which is not widely appreciated for scattering experiments and
computer simulations on aqueous solutions containing large molecules, or in systems where
a fluid is confined within a porous structure. As a simple example suppose, as in the
introduction, the system consists of hard core molecules or pores of radiusR, containing
ideal gas atoms. The density inside each molecule is continuous and uniform out to the
edge of the molecule, i.e.

np(r) =
{
n̄p for |r| 6 R
0 for |r| > R.

(11)

This gives rise to the exact form, equation (1), for the particle internal radial distribution
function,gp(r), and we note that 4π

∫
gp(r)r

2 dr = vp. This form also has an exact Fourier
transform toQ space and we define the internal particle structure factor as

Sp(Q) = 4π

vp

∫
gp(r)r

2 sinQr

Qr
dr = 9

[
(sinQR −QR cosQR)

(QR)3

]2

.

If the autocorrelation function is transformed toQ space it enables the convolution in (10)
to be performed as a product of Fourier transforms:

S(Q) =
∫

dr G(r) exp(iQ · r) = MSp(Q)+MHc(Q)Sp(Q)+NcMδ(Q) (12)

where

Hc(Q) = n̄c
∫

dr exp(iQ · r)[gc(r)− 1]. (13)

Inverse Fourier transformation of (12) then yields the autocorrelation function for the system
(10), and, since the results of most experiments are reported as radial distribution functions,
it is useful display the radial distribution function associated with equation (10), namely

g(r) = 1

n̄
G(r) = V

Vp
g(s)p (r)+

1

vp

∫
du gc(r − u)g(d)p (u) (14)

where the average scattering density in the system is given byn̄ = Mn̄c, andVp = Ncvp
represents the total volume of the system occupied by the molecules. It should be noted
that the ratioV/Vp ≡ n̄p/n̄, which can be used to evaluate the effective volume of the
molecules in any particular case, provided a reasonable estimate of the average density
inside the molecules is available.

Using (14) it is now possible to understand where the excluded volume effect comes
from. At r = 0, gp(r) = 1, while gc(r − u) = 0 (if the particles do not overlap), so
g(r = 0) = V/Vp. At large r, however,gp(r) = 0, while gc(r − u) = 1, sog(r) = 1
by virtue of the normalization ofgp(r). Since the total volume occupied by the molecules,
Vp, is necessarily smaller than the total volume of the system,V , the radial distribution
function rises above unity at lowr.
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As an example of the application of this result we consider the case of hard-core
molecules of diameter 8.28̊A at a density of 5.65×10−4 molecules per cubic̊angstr̈om—this
corresponds to the concentration in a recent experiment on acetylcholine bromide in solution
(1 mol acetylcholine bromide to 50 mol water; Hulmeet al 1997). The centre structure
factor,Hc(Q), was calculated within the Percus–Yevick approximation for a binary mixture
of hard spheres (see Lebowitz 1964) and multiplied by the uniform molecule form factor as
given in (12). For the purpose of this calculation it was assumed the water molecules could
be also be represented by hard-core molecules of diameter 2.7Å, corresponding to the likely
near-neighbour approach of water molecules. The densities of both components were kept
to their experimental values, which gives a packing fraction of 0.45—a density region where
the Percus–Yevick approximation starts to break down (Hansen and Macdonald 1986), but
nonetheless gives useful results beyond the hard-core radius of the particles. Finally the
resulting total structure factor was transformed numerically back tor space, and the result
is shown in figure 2.

It can be seen that the result of the convolution, (10), is drastically altered compared to
the original centre radial distribution function. In particular the centralδ(r) function in the
centre autocorrelation function, which cannot be plotted, spreads out to a broad distribution
out to 8 Å in the radial distribution function. Moreover, the place where the edge of the
centre distribution occurs, also atr = 8.28 Å, is now close to the firstminimum in the
convolutedg(r).

The centres radial distribution function in this case is dominated by the smaller water
molecules. According to the present analysis with the Percus–Yevick approximation, the
hard-core edge of the centres radial distribution function occurs at 8.28Å as expected, but
the subsequent oscillations in the centres function have a period closer to that of the smaller
water molecules. Very likely the acetylcholine centre distribution in the real solution will
not look like this at all, since the acetylcholine molecules are certainly not spherical, nor
can water be modelled with a hard-core interaction, but in the convolutedg(r) it will be
seen that the inter-molecular correlation between solute particles has been largely washed
out by the convolution, in spite of the large amount of structure in the centres function.
Therefore the results of the analysis are to a very good approximationindependentof the
precise details of the centres function.

Another distinctive feature of the convolutedg(r) is that at lowr the radial distribution
function rises considerably above the large-r limit of unity. This rise is generated by the
factorV/Vp outside the first term in equation (14), which in this example has the value of
5.95. The change in level ofg(r) from low to high r arises from the change in the local
density, fromn̄p at low r to n̄ at high r. A recent example of a system where this effect
was seen was the measurement of water structure in porous ionomer membranes (Leeet al
1992): the water in this case was confined to roughly spherical pores of radius∼ 18 Å.
Other examples include the case of fluids such as helium in Vycor glass.

In the analysis so far the fluid has been confined but has no intrinsic structure of its
own. For clarity the radial distribution function for this uniform fluid is labelledgu(r) to
distinguish it from the case of what might be observed if it were a real fluid. In fact if this
were a real fluid it would have a structure in its own right, which would be signalled as
peaks in the molecule internal radial distribution function,g(s)p (r). The point to be made
here is that when analysing the structure of the liquid the amplitudes of the oscillations
in g(r) are compared against the radial distribution function for a system where there are
no interactions between the atoms. This latter distribution function is a flat line for a
homogeneous system, but for a heterogeneous system where the atoms cannot occupy all
of space, and where the scale of the confinement is significantly greater than the size of
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individual atoms, this so-called uncorrelated distribution function develops a structure of its
own precisely by virtue of the confinement of the atoms. Any radial distribution function for
the liquid in the confined system must be corrected for this structure if it is to be compared
to the distribution function of the sameunconfinedliquid.

The basic proposal of this paper is that in order to compare the structure of the
same fluid in different environments, such as in confined geometry, or in solution, the
raw radial distribution function,g(r), obtained by Fourier transformation of the diffraction
data, or derived by computer simulation, should not be used for this purpose, but instead
a renormalized radial distribution function should be generated, defined by dividing the
radial distribution function by the uniform fluid radial distribution function for the particular
environment concerned:

g̃(r) = g(r)/gu(r). (15)

This would allow the most accurate comparison of the fluid structures in the two
environments.

The analysis so far applies to the case of a fluid confined in a porous material, that
is, the case of figure 1(b). Therefore the next section addresses the question of how the
uniform fluid radial distribution function might be calculated in the other common situation,
that is, when the fluid isexcludedfrom certain regions of the sample, which is the case
shown in figure 1(c). In fact this requires only a minor extension to the analysis. This is
the case most frequently encountered in aqueous solution studies.

3. Application to aqueous solution neutron scattering studies

By employing hydrogen–deuterium substitution on an aqueous solution, one can obtain from
neutron diffraction with three isotopic contrasts three composite partial radial distribution
functions, namely HH, HX and XX, where H represents the protons on which a substitution
is made, and X represents a weighted sum of all non-substituted atoms (Soper and Turner
1993). If the protons substituted correspond to the water or exchangeable hydroxyl protons,
then every place where a solute molecule or ion occurs must by definition exclude water
from that region. In other words there will be a hole in the substituted proton distribution
in the vicinity of the molecule. This situation, which is essentially the mirror image of
the case at the end of the previous section, can be dealt with by a simple extension of the
previous analysis.

3.1. The uniform-fluid radial distribution function for the HH correlations

In this instance the problem can be treated as a bulk uniform fluid in which holes are created
by the dissolved molecules. Thus the uniform-fluid hydrogen distribution function can be
written down from (7) as

nH (r) = nH −
∫

dr′ nc(r′)n(H)p (r − r′) (16)

wheren(H)p (r) is defined by (11) withn̄(H)p = nH , andnH is typically the hydrogen atom
number density of the bulk fluid: it is strictly the hydrogen density that occurs in regions
not occupied by solute molecules. The average hydrogen density in the system is therefore

n̄H = 1

V

∫
dr nH (r) = nH

[
1− Vp

V

]
. (17)
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Using (16) in (9), with (10) and (14), to calculate the uniform fluid radial distribution
function as before, new terms appear:

g(HH)u (r) =
(

1− Vp
V

)−2 [
1− 2

Vp

V
+Vp
V
g(HH)p (r)+

(
Vp

V

)2 1

vp

∫
du gc(r − u)g(HH)p (u)

]
.

(18)

It is now seen that in the limit ofr = 0 g(HH)u (r) ≈ (1− Vp/V )−1, i.e. it goesaboveunity
at low r by an amount which is inversely proportional to the relative volume of solvent in
the solution compared to the total volume of fluid present, while at larger g(HH)u (r) ≈ 1
as expected.

For the case of acetylcholine discussed in the previous section the density of water
protons is 0.0556 H atoms̊A−3 compared to the value of 0.0668̊A−3 in pure water. This
means the product̄ncvp = 1− n̄H /nH ≈ 0.168, so, sincēnc ≈ 0.000 565Å−3 for this case,
vp = 297.3 Å−3, which gives an effective molecule radius of 4.14Å. This is the origin
of the numbers used in the previous section. Using the same procedure as defined in the
previous section, these numbers can be used to estimateg(HH)u (r).

Comparison of this calculation with the actual measuredgHH (r) function for this system
is shown in figure 3(a): it is clear that the measured HH radial distribution function does
indeed show the predicted positive deviation at lowr, and that assuming the acetylcholine
molecule is spherical for the purpose of calculating the excluded volume effect gives a
reasonable account of this deviation.

Finally the measured data can be renormalized to the uniform fluid, as suggested in
(15) above. The result, shown in figure 3(b), now shows excellent agreement with the pure
water data, and indicates that water structure is not discernibly perturbed by the presence
of acetylcholine at this concentration. The above procedure can therefore be used reliably
to assess the extent to which excluded volume effects will modify any conclusions that are
to be drawn about the modification of the solvent structure by a solute.

3.2. XX and XH composite radial distribution functions

Given the result of subsection 3.1, it is now straightforward to generate the equivalent
uniform-fluid approximation for the other radial distribution functions. For the unlabelled
X molecules the density will not necessarily drop to zero inside the solute molecules, but
will in general be different from the solvent. Thus

nX(r) = nX +
∫

dr′nc(r′)n(X)p (r − r′) (19)

where nX is the scattering density of X atoms in the solvent region of the fluid and
n̄(X)p = (1+ fs)nX is the scattering density of X atoms inside the solute molecules. Then
the average density of X atoms is̄nX = nX[1 + fsVp/V ] while the uniform-fluid radial
distribution functions are

g(XX)u (r) =
(

1+ fs Vp
V

)−2 [
1+ 2fs

Vp

V
+ f 2

s

Vp

V
g(XX)p (r)

+
(
fs
Vp

V

)2 1

vp

∫
du gc(r − u)g(XX)p (u)

]
(20)

and

g(XH)u (r) =
[(

1+ fs Vp
V

)(
1− Vp

V

)]−1 [
1+ (fs − 1)

Vp

V
− fs Vp

V
g(XH)p (r)
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Figure 3. (a) The measured HH pair radial distribution function for acetylcholine solutions (line)
compared to the same function for pure water (circles). The dashed line shows the excluded
volume effect for the water protons in the acetylcholine solution (equation (18)). (b) The
renormalized HH pair radial distribution function for acetylcholine solution which takes account
of the excluded volume effect (line), compared with the same function for pure water (circles).
Note that the effect of the renormalization is to show there is no significant enhancement of
the water structure at this concentration even though direct comparison of the measured data
(figure 2(a)) might suggest that such an enhanced structure in solution is actually occurring.

−fs
(
Vp

V

)2 1

vp

∫
du gc(r − u)g(XH)p (u)

]
. (21)

Note that both forms have the correct limiting behaviour at larger, while the low-r limits
are [1+ 2fsVp/V + f 2

s Vp/V ]/(1+ fsVp/V )2 for XX and 1/(1+ fsVp/V ) for XH. In
particular it will be noted that the XX radial distribution function is always above unity at
low r for all fs (other than zero), while the XH radial distribution function is below unity
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if fs > 0.
It is worth noting that the intra-solute density functionsn(H)p (r) and n(X)p (r) and the

three radial distribution functions associated with them,g(HH)p (r), g(XH)p (r) andg(XX)p (r),
will not be identical in general, because for the H distribution the density will normally be
uniformly zero inside the solute molecule, providing there is no solvent penetration, while
the X distribution may contain some residual structure, depending on the placing of the
atoms in the solute particle. For illustrative purposes however it is sufficient to treat them
as having a uniform internal density distribution.

4. Discussion and conclusion

The formulae of the preceding sections demonstrate the importance of taking account of the
excluded volume effect when comparing radial distribution functions from the same solvent
in different systems. Two significant approximations have been made in doing this, namely
assuming the solute particle has no internal structure, and also assuming that the solute
particle can be represented by a spherically isotropic distribution function. The former
assertion is exactly true for the HH function, when the solvent is completely excluded from
the solute, since the autocorrelation in this case function is sampling the uniformabsenceof
H scattering density inside the solute particle. In fact the HH function is the most useful for
comparing the solvent structure in different environments, since it can often be measured
independently from any other correlation function in the system. It will also apply to the fluid
in pores situation, since again the particle radial distribution function is simply measuring
the regions where fluid is allowed and can have no internal structure. In these situations
the particle radial distribution functiongp(r) samples theshapeof the cavity confining the
fluid or created by the solute molecule, but is not sampling its internal structure. For the
XX and XH functions, and in fact in all situations when the factorfs 6= −1, it will be
necessary in general to introduce some structure into the solute molecule, via the internal
particle radial distribution functions,g(XH)p (r) andg(XX)p (r).

The assumption that the solute molecule can be represented by an effective spherically
isotropic distribution is equally an approximation which may need to be tested in individual
cases, but in the majority of situations where excluded volume effects are significant, namely
when the solute molecules or cavities are significantly larger than the solvent molecules, it
is reasonable, since in those cases the orientation of the solute molecule will not normally be
strongly correlated with the orientations of the solvent molecules. Of course the assumption
of hard-core particles is less satisfactory for real systems, since in practice the edges of a
real solute molecule cavity will be blurred when viewed from the centre of the cavity or
molecule. This again will not affect the qualitative results shown in figures 2 and 3—the
effect of blurred edge to a particle will appear primarily in the large-r tail of gp(r), rather
than having any strong effect at lowerr.

There have been several instances (Franks and Desnoyers 1985, Ferrarioet al 1990,
Soper and Luzar 1992, Turner and Soper 1994) where changes to the water–water
correlations in computer simulations and neutron scattering experiments on aqueous
solutions have been noted. Often it is found there is a roughly linear increase in the height
of say the first O–O peak with increasing concentration (Ferrarioet al 1990). However,
since excluded volume effects are rarely if ever taken into account, it is not clear what
is the significance of these increases. According to equation (18) the increase of the local
density at lowr is inversely proportional to the relative volume of solvent in the fluid. Since
this volume decreases with increasing solute concentration, an increase in the height of the



2410 A K Soper

water–water correlations at lowr as the concentration increases is not at all unexpected. It
cannot be taken to automatically imply that the water has somehow enhanced its structure
in the presence of the solute. Only after excluded volume effects are accounted for, for
example by generating a renormalized radial distribution function such as equation (15), can
comments about changes to the solvent structure be made. By the same token the apparent
absence of changes to the solvent structure in solution (Turner and Soper 1994) cannot be
assumed to indicate that such changes are truly absent, unless the excluded volume effect
is estimated and shown to be small.
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